SIQUAL 6587 Steel

Designation by Standards

<table>
<thead>
<tr>
<th>Brand Name</th>
<th>Ravne</th>
<th>Mat. No.</th>
<th>DIN</th>
<th>EN</th>
<th>AISI/SAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIQUAL 6587</td>
<td>CT781</td>
<td>1.6587</td>
<td>17CrNiMo6 †</td>
<td>18CrNiMo7-6</td>
<td>4820</td>
</tr>
</tbody>
</table>

Chemical Composition (in weight %)

<table>
<thead>
<tr>
<th>C</th>
<th>Si</th>
<th>Mn</th>
<th>Cr</th>
<th>Mo</th>
<th>Ni</th>
<th>V</th>
<th>W</th>
<th>Others</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.18</td>
<td>max.0.40</td>
<td>0.70</td>
<td>1.65</td>
<td>0.30</td>
<td>1.55</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Description
Nickel-molybdenum alloy steel. Alloyed case hardening steel for heavy and high strained gear parts with high demands on toughness at core tensile strength of 1050-1350 N/mm².

Applications
Severely stressed components for mechanical engineering and automobile industry.

Physical properties (average values) at ambient temperature
Modulus of elasticity \([10^3 \times \text{N/mm}^2]\): 210
Density \([\text{g/cm}^3]\): 7.87
Thermal conductivity \([\text{W/m.K}]\): 38.0
Electric resistivity \([\text{Ohm mm}^2/\text{m}]\): 0.18
Specific heat capacity\([\text{J/g.K}]\): 0.46

Coefficient of Linear Thermal Expansion \(10^{-6} \text{°C}^{-1}\)

<table>
<thead>
<tr>
<th>20-100°C</th>
<th>20-200°C</th>
<th>20-300°C</th>
<th>20-400°C</th>
<th>20-500°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.2</td>
<td>12.1</td>
<td>12.9</td>
<td>13.4</td>
<td>13.9</td>
</tr>
</tbody>
</table>
Continuous Cooling Transformation (CCT) Diagram

Time-Temperature Transformation (TTT) Diagram
Soft Annealing
Heat to 650-700°C, cool slowly in furnace. This will produce a maximum Brinell hardness of 229.

Intermediate Annealing: 630-650°C.

Hardening
Carburising: 880-980°C.
Core Hardening: 830-870°C, water.
Case Hardening: 780-820°C, water.

Normalizing
Normalizing: 850-880°C, air.

Tempering
Tempering temperature: 150-200°C.

Soft annealed treated: max. 229 HB.
Treated for cold shearability: max. 255 HB.
Treated for strength: max. 229 HB.
Treated for ferite and pearlite structure and hardness range: 159-207 HB.

Tensile Strength R_m in N/mm2 vs. Diameter in mm
After Hardening and Tempering at 200°C

<table>
<thead>
<tr>
<th>Diameter in mm</th>
<th>d<=16</th>
<th>17<d<=40</th>
<th>41<d<=100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile Strength R_m in N/mm2</td>
<td>min. 1200</td>
<td>min. 1100</td>
<td>min. 900</td>
</tr>
</tbody>
</table>

Hardenability Diagram

Forging
Hot forming temperature: 1050-850°C.

Machinability
No data.

Forms manufactured: Please see the Dimensional Sales Program.

Disclaimer
The information and data presented herein are typical or average values and are not a guarantee of maximum or minimum values. Applications specifically suggested for material described herein are made solely for the purpose of illustration to enable the reader to make his own evaluation and are not intended as warranties, either express or implied, of fitness for these or other purposes. There is